

self.wiki

[image: documentation]
 [https://selfwiki.readthedocs.io/en/latest/][image: tests]
 [https://travis-ci.org/paulollivier/self-dot-wiki]self.wiki [https://github.com/paulollivier/self-dot-wiki] is a wiki and todo manager.
I wanted to be able to write notes, documentation, and tasks from a simple (understand: minimal) interface, using
mostly keyboard shortcuts.

Here’s what my feature list draft looked like:

	[x] Create wikis directly from URL (ctrl+l, then type stuff, on most browsers)

	[x] On any URLs. i should not be restricted to naming stuff (restricted names are /todo, /**/edit,
/**/edit/save, /**/edit/delete)

	[x] Wikis should be more or less standard extended markdown

	[x] Wikis should be stored on the filesystem as-is, no database or stuff like that.
I should be able to read them using less when i want to.

	[x] Should not make calls to the outside world, except on linked stuff.

	[x] At least todo operations should have keyboard shortcuts

	[x] add

	[] delete

	[] update status

	[x] I should be able to navigate links without using weird browsers like uzbl [https://www.uzbl.org/]

That’s more or less it.

I looked at several other solutions, including tiddlywiki [https://tiddlywiki.com/], but it was too mouse-based for my tastes.

Important security note:

self.wiki [https://github.com/paulollivier/self-dot-wiki] should not be publicly accessible! Any potential mean-inclined person could steal valuable secrets from
your computer via this application! That is because we allow a potential attacker to request files outside of
self.wiki [https://github.com/paulollivier/self-dot-wiki]’s CONTENT_ROOT.

If you don’t specify a --host argument, self.wiki [https://github.com/paulollivier/self-dot-wiki] will listen only on the local computer, and should therefore be
safe to use.

Installation

Install using pip, using the master branch, or by picking a release in the releases [https://github.com/paulollivier/self-dot-wiki/releases] tab:

pip install https://vit.am/gitea/paulollivier/self-dot-wiki/archive/master.tar.gz

Then, simply run the included script:

$ self.wiki --help
usage: self.wiki [-h] [--debug] [--host HOST] [-p PORT]

optional arguments:
 -h, --help show this help message and exit
 --debug Turns on debug mode
 --host HOST address to bind on
 -p PORT, --port PORT Port to listen on

Configuration

Configuration is kept to a minimum, and uses environment variables to achieve its goals.

	Environment variable name

	default

	note

	SELF_WIKI_CONTENT_ROOT

	~/.self.wiki

	self.wiki [https://github.com/paulollivier/self-dot-wiki] will store its markdown files there.

	SELF_WIKI_FAVICON_PATH

	/static/favicon.ico

	Path to the favicon to use. Must be relative to the CONTENT_ROOT.

	SELF_WIKI_TITLE_PREFIX

	“self.wiki “

	Page <title> prefix.

Usage

After having started self.wiki, go to your navigator, open up http://localhost:4000/. Help should be available at
http://localhost:4000/help.

If a page is not available, you will be redirected to its edit page, which is simply /path/to/page/edit.

Keyboard shortcuts

We make heavy use of accesskeys to navigate the page. In fact, self.wiki [https://github.com/paulollivier/self-dot-wiki] autogenerates those on every link present
on any page.

On firefox, you can activate these keys by pressing alt+shift+key.

There are also some keyboard shortcuts available on a more general manner.

	Keys

	Context

	Effect

	ctrl+c n

	any

	create a new todo item

	ctrl+c d

	view

	delete current page

	alt+shift+f

	edit

	send a file, sibling to the current edited file

	alt+shift+s

	edit

	save current edited file

Todos

To create a todo item, use the keyboard shortcut (please see above). You will be prompted for a text that will be shown.

To mark a todo item as done (but not remove it completely), click on its text. The text will be striked, representing completion.

To delete a todo item, click on its del button.

NOTE: if a todo item is deleted, when also marked as done, we will write this item to a special page, /journal/year/month/day.md.

Git integration

If a .git repository is present at the root of the SELF_WIKI_CONTENT_ROOT, self.wiki will try to commit changes.

Please note that they won’t be pushed or pulled to a remote repository! I might add it in the future

Advanced usage

Instead of running the included self.wiki script, you may use any WSGI-compatible server. This will increase the
performance of loading the pages.

For instance, using gunicorn [https://gunicorn.org/]:

gunicorn -b localhost:4000 self_wiki:app

I have yet to run benchmarks to measure the real-world improvements.

Special thanks

This project uses many open-source libraries:

	flask [https://flask.pocoo.org/]

	pymarkdown [https://python-markdown.github.io/]

	milligram [https://milligram.io/]

	mousetrap.js [https://craig.is/killing/mice]

	sphinx [https://todo.me/]

Special thanks to those.

Contributing to this project

Being Open-Source, this project welcomes ideas and changes. However, some rules are in place:

	Please be nice. The maintainers don’t have time for rude people.

	Before submitting your issue, search if a similar issue has not been raised.
If yes, please add your comment to the existing issue instead

	Don’t be rude.

	That’s it. I just like lists.

Ways you can contribute

You can:

	Submit bugs, feature requests or other

	Contribute code, in the form of Pull Requests

	Just tell the maintainers that this project is helpfull. It will be appreciated.

Contributing bug reports and feature requests

When writing bug reports, please remember to include as much data as possible with your request. That will help
tremendously.

When writing feature requests, please specify your use case, and what behaviour you expect.
If you can, writing unit tests matching your feature request is a huge help.

Contributing code, tests

Architecture

The main code is in self_wiki, the tests are in tests, and the documentation resides in docs.

Environment

You may use the provided [Pipfile] to manage the environment for this project. If you add or remove packages, please
remember to commit the resulting Pipfile.lock.

When writing code in this project, remember to add tests! We use py.test as test runner, and the whole suite is run
against multiple versions of python, via tox.

Misc.

If you are adding features, remember to update the configuration accordingly.

Should you lack the skills to contribute, we will be happy to help.

API Documentation

self_wiki

self_wiki is an opinionated Wiki engine & task manager.

self_wiki.wiki

Contains wiki-related stuff.

For instance, :py:class:Page may be used to manipulate .md files on disk.

	
class self_wiki.wiki.Page(path, root='', level=0)

	Container for a markdown file.

Basically, all manipulation on .md files should go via this

	
load()

	Load the markdown data from disk.

Also sets object properties according to filesystem state.

	
path

	Return the full path to the markdown document.

	Return type

	str

	
relpath

	Return the page’s path, relative to the configured content root.

	Return type

	str

	
render()

	Render the markdown to HTML, using the object’s converter.

	Return type

	str

	
save()

	Persist the Page object on disk and update the recent files list.

note: this method does not update a RecentFileManager object!

	
title

	Return the title of the page.

This is computed either from the markdown’s metadata
(‘Title:’ as one of the pages’ header), or the first level 1 header, or
the pages’ path

	Return type

	str

	
class self_wiki.wiki.RecentFileManager(root, wanted_extensions=None)

	Represents a collection of files, with their age attached.

	
delete(path)

	

Delete :param path: from the recent files.

	Parameters

	path (str) – The exact path we should forget.

	
get(limit=None)

	Return up to limit recent items.

	Return type

	List[Dict[str, Union[str, int]]]

	
classmethod get_recent_files(directory, limit=20, wanted_extensions=None)

	Return the list of recent files.

This list is sorted by modification time as a UNIX timestamp
(recent first), with an optional limit.

	Return type

	List

	Parameters

	
	directory (str) – Base directory for the search

	limit (int) – number of results to return

	wanted_extensions (Optional[List[str]]) – A list of file extensions we want.

If None, [‘md’] is used.
:return: a dictionary list with, where each dict has the
following keys: path, mtime

	
re_scan(limit=None, wanted_extensions=None)

	Re-scan the defined content root.

	Parameters

	wanted_extensions (Optional[List[str]]) – a list of file extensions we want to include.

Specifying [‘’] will include everything. Defaults to [‘md’]
:type limit: Optional[int]
:param limit: limit the number of results to this
:return:

	
root

	Return the path we consider as root.

	Return type

	str

	
update(path)

	

Update the recency of the file designated by :param path:.

Note that said file is not required to exist.

	Parameters

	path (str) – path to the file, relative to RecentFileManager.root,

or not.

self_wiki.todo

Models related to todos stuff.

	
class self_wiki.todo.TodoList(serialization_path)

	A container for a collection of Todos.

	
from_json(j)

	Insert an element from a dictionary object.

Tries to compensate for eventual missing id.

	Parameters

	j (dict) – A dictionary containing at least a ‘text’ key

	
load()

	Load a serialized collection from disk.

	
save()

	Persist current collection on disk.

	
todos

	Return the internal object list.

Why not rename self._todos to self.todos? No idea.

self_wiki.utils

Some useful classes and functions related to self.wiki.

	
self_wiki.utils.write_todo_to_journal(basepath, todo)

	Write the object to a Page, denoted as journal in the URL.

The given item should have the following keys: ‘id’, ‘text’

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 self_wiki	

 	
 	
 self_wiki.todo	

 	
 	
 self_wiki.utils	

 	
 	
 self_wiki.wiki	

Index

 D
 | F
 | G
 | L
 | P
 | R
 | S
 | T
 | U
 | W

D

 	
 	delete() (self_wiki.wiki.RecentFileManager method)

F

 	
 	from_json() (self_wiki.todo.TodoList method)

G

 	
 	get() (self_wiki.wiki.RecentFileManager method)

 	
 	get_recent_files() (self_wiki.wiki.RecentFileManager class method)

L

 	
 	load() (self_wiki.todo.TodoList method)

 	(self_wiki.wiki.Page method)

P

 	
 	Page (class in self_wiki.wiki)

 	
 	path (self_wiki.wiki.Page attribute)

R

 	
 	re_scan() (self_wiki.wiki.RecentFileManager method)

 	RecentFileManager (class in self_wiki.wiki)

 	
 	relpath (self_wiki.wiki.Page attribute)

 	render() (self_wiki.wiki.Page method)

 	root (self_wiki.wiki.RecentFileManager attribute)

S

 	
 	save() (self_wiki.todo.TodoList method)

 	(self_wiki.wiki.Page method)

 	self_wiki (module)

 	
 	self_wiki.todo (module)

 	self_wiki.utils (module)

 	self_wiki.wiki (module)

T

 	
 	title (self_wiki.wiki.Page attribute)

 	
 	TodoList (class in self_wiki.todo)

 	todos (self_wiki.todo.TodoList attribute)

U

 	
 	update() (self_wiki.wiki.RecentFileManager method)

W

 	
 	write_todo_to_journal() (in module self_wiki.utils)

 nav.xhtml

 Table of Contents

 		
 self.wiki

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

